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Canonical orthonormal basis for SU(3) 3 SO(3). 
11: Reduced matrix elements of the SU(3) generators 

R Le Blanc and D J Rowe 
Department of Physics, University of Toronto, Toronto, Ontario, Canada, M5S lA7 

Received 2 November 1984 

Abstract. A simple algorithm is given for the calculation of reduced matrix elements of 
the generators of the su(3) algebra in the canonical SU'(3) 3 SO(3)  basis introduced in I. 

1. Introduction 

An unambiguous and group theoretically sound labelling scheme has recently been 
proposed by Deenen and Quesne (1983, see also Quesne 1984a, b) to solve the labelling 
problem for the SU( n )  3 SO( n )  group chain. This scheme was successfully used in 
part I of this series of papers (Le Blanc and Rowe 1985) to build canonical orthonormal 
bases for SU(3) =) SO(3) representations. Since the group chain SU(3) 2 SO(3) is of 
widespread importance in, for instance, the nuclear problem (Elliott 1958a, b, Arima 
and Iachello 1976) and the three body problem (Chacbn et al 1984), the calculation 
of reduced matrix elements of the generators of the su(3) algebra and, more generally, 
of SU(3) tensor operators is of major interest. 

The purpose of this paper is to present a simple algorithm for the calculation of 
reduced matrix elements of the generators of SU(3) in the new canonical basis. Since 
the actual construction of the basis uses the complementarity of the O(3) and the 
Sp(2, %) group actions within the fundamental representations of the Sp(6,%) group 
(Le Blanc and Rowe 1985, Deenen and Quesne 1983), we proceed by calculating the 
matrix elements of the fundamental Sp(2,%) xO(3) tensor from which all other matrix 
elements can be constructed by a simple building up process. 

Finally note that the techniques introduced in this paper can be generalised to the 
problem of mixing Sp(3, %) xO(A) irreps; a problem of relevance to the microscopic 
theory of nuclear collective shell structure (Rosensteel and Rowe 1980) and it is our 
intention to present an investigation of such a generalisation in a subsequent publi- 
cation. 

2. Complementarity of the sp(2,%) 3 u(2) and the su(3) 3 so(3) algebras 

As shown in I, canonical bases for SU(3) 2 SO(3) unirreps are easily constructed using 
the well known complementarity that exists in a six-dimensional Bargmann space 
between the Sp(2, %) and O ( 3 )  actions, on the one hand, and between the U(2) and 
U(3) actions, on the other. 
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A realisation of the sp(2, W )  algebra is given in terms of the six complex (Bargmann) 

(2 . la )  

variables gah (Y = 1,2, i = 1,3, by the ten generators 

&a, = ga * gp 

(2.lb) 

(2.lc) 

with summation over repeated indices. The u(2) subalgebra is spanned by the four 
( vap) generators. 

Likewise, a realisation of the u(3) algebra is given by the nine generators 

Cy = gag a/agay (2.2) 

A convenient basis for the eight-dimensional su(3) algebra is given by the spherical 

(2.3a) 

tensors 

L, = c,, = - h ( l m t ;  1m"/lm)g,,.a/aga,,. 

(2.36) 

gam = ( - 1  )"'Ea-,. - 
L is the angular momentum and Q2 = J 3  C2 is the su(3) quadrupole tensor. 

the subgroup chain labels 
As shown in I, basis states for an Sp(2,W) unirrep (a )  = ((+,a2) can be indexed by 

(2.4) 

where ( n )  = ( n ] ,  n 2 )  are missing labels and { U }  = { U , ,  w 2 } .  On the other hand, basis 
states for a U(3) unirrep { h }  = { h i ,  h2, h3} can be labelled by 

where n ' =  ( n ; ,  n ; )  again are missing labels, E = 0 or 1 and L z  E. 

Since the above Sp(2,W) and U(3) actions commute, it follows that basis states 
for the six-dimensional Bargmann space can be simultaneously indexed by the labels 
of both subgroup chains. However only a subset of possible representations occur in 
this space. In particular, as a consequence of the Sp(2,W) xO(3) complementarity 
(Moshinsky and Quesne 1970, 1971), only representations with 

(2.6) (a )  = (L+; ,  E + +) = ($(LE)) 

occur. And as a consequence of the U(2) X U(3) complementarity (Biedenharn and 
Giovanni 1967), only the two-rowed U(3) representations (i.e., h, = 0) occur with 

{o} = { h ,  ++, It ,+;} = { ; (h ) } .  (2.7) 
It is also well known that the Sp(2,W) x O(3) and U(2) X U(3) representations are 

multiplicity free in this space so that, as shown in I, the two sets of multiplicity indices 
can be identified; i.e., 

( n ) = ( n ' ) .  (2.8) 
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Thus the two subgroup chains share their labels and an orthonormal basis for the 
six-dimensional Bargmann space is given by states labelled 

I{hH n ) [ L ~ l ;  v M ) .  (2.9) 

3. Construction of an orthonormal basis 

Let 

I(LE); VM) = /[LE]; vM)= ( { L E } ( O O ) [ L E ] ;  vM) (3.1) 

denote a member of the Sp(2 ,S )  lowest multiplet of U(2) x U(3) states; i.e. the states 
satisfying 

B a p  I[ LE] ; vM) = 0. (3.2) 

These states are given by the Bargmann wavefunctions 

where 9 h  is 

and 

proportional to a solid harmonic 

gl i l  = ~ ( 1 / J 2 ) ( g , , + i g , ~ ) .  

A non-orthonormal basis 
(3.9) 

I w { ~ I ( ~ ) E L E I ;  V M ) ) =  [z‘“’(d)I[~~l; ~ 1 1 ”  (3.10) 

is now given by the U(2) coupling of a polynomial Z‘ “ ’ (d )  of U(2) rank {n} in the 
symplectic raising operators with the above S p ( 2 , S )  lowest weight states. The poly- 
nomials Z‘“’(.d) are defined by 

Z { “ ’ ( . d )  = N(x, y ) 9 x ( d ) ( 2 d + 1 d - 1  - di) 
with 

(2x + l ) ! (x  + y ) !  
x!y!(2x + 2y + 1 )  ! ) ’ N(x,  v )  = ( 

(3.11) 
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This polynomial is given in the Bargmann representation by the substitution 

d+, = ( 1 / h l  - g1, d o  = g1 * g2, d - I  = (1/& - g2. (3.12) 

Finally, the states (3.10) can be transformed into the orthonormal basis (2.9) by 
means of a simple Hermitian transformation 

J{h) (n ) [LEl ;  vM) = K-’({h)[LEl)IY({h)(n)[~&l; v M ) )  

where K ( { h } [ L & ] )  is the Hermitian square root of the overlap matrix 

K2,,4{hKLEl) = W ( { h N n ) [ L & l )  I w { h ) ( n ‘ ) [ L E l ) ) .  (3.13) 

This transformation is easily calculated following the appendix of I. 

4. Reduced matrix elements of the fundamental tensor 

Matrix elements of the sp(2,%) and su(3) algebras, and indeed of any polynomials in 
the Bargmann variables (ga i ) ,  can obviously be expressed in terms of the matrix 
elements of these variables themselves. Furthermore, since a/agai is the Hermitian 
adjoint of gai with respect to the Bargmann measure, its matrix elements are simply 
related to those of gai. Now gai is a component of the fundamental U(2) xO(3) tensor 
T of U(2) rank (10) and O(3) rank [lo]. On the other hand, d/agai is a component 
of the adjoint tensor Tt of U(2) rank (0, -1) and O(3) rank [lo]. Together, (ga i )  and 
d/dgai are components of the fundamental Sp(2,%) xO(3) tensor of Sp(2, %) rank 
(0) (the bar indicating that g,, and a/agai span a finite and hence non-unitary irrep 
of Sp(2,%)) and O(3) rank [lo]. It is therefore of prime importance to calculate the 
matrix elements of the tensor T{lol[lol = T. 

In this section, we calculate matrix elements of T reduced with respect to both U(2) 
and O(3) in the basis (2.9). In the following section, we then use these matrix elements 
to calculate matrix elements of the 4 3 )  algebra in the canonical SU(3) 3 SO(3) basis. 

In a subsequent paper, it will be shown how the matrix elements of T can be used 
to infer Sp(2,%) XO(3) and more generally Sp(3,%) xO(A) reduced matrix elements 
by making use of the Wigner-Eckart theorem as extended to non-compact groups by 
Klimyk (1983 and references therein). 

We start by considering the selection rules for the doubly reduced matrix elements 

( ( h ’ ) (  n’)[ L’&’]11 T{’O)[‘O’\I{ h } (  n>[  L E ] )  

defined by 

({ h ’} ( n ‘ ) [ L I E  ’3 ; ~ ’ M ’ I  T:’ O)cO1l { h ) ( n ) [ L E  3 ; v ~ )  

= ( i h v ;  $0 (fh’v’) X ( L M  ; I m( L’M’)({h’}( n’)[  L’E’][[  TtlO~rlO1(({ h } (  n )[ L E ] ) ,  
(4.1) 

where f h  = f( h ,  - h 2 ) ,  etc. 
Since T{lO)[lO’ is of U(2) rank { 10) and of angular momentum L = 1, we must have 
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The selection rule for E is obtained by recalling (cf I) that basis states only occur with 

E = O  

E = l  

for h ,  + h2 - L even, 

for h ,  + h2 - L odd. 
(4.3) 

This implies the selection rules 

L'= L+ 1, 

L' = L, 

L' = L, 

E l  = E ,  

E l =  E + 1 = 1, 

E r =  E - 1 = 0, 

nl, + n; = n, + n2, 
nl, + n; = n, + n,, 
nl, + n; = n, + n2 + 2, 

(4.4) 

L'= L -  1, E t  = E, 

The non-orthonormal basis states 
by 

[z'n'(g)rcl'rf;"'(g)l:h) 

Z ' " ' ( g )  = Z y d ( g ) ) .  
where 

nl ,+n;= n,+n,+2. 

(3.10) are given in the Bargmann representation 

(4.5) 

Multiplying such a basis state by the fundamental tensor Tt'o)[lol(g) = g, we can couple 
to states 

(4.6) [ g[zt n' ( g )  +(LE )( )I{ h )I { h'KL's'1 

according to the above selection rules. 

we can effect a U(2) recoupling 
Since g and Z'" ' (g)  commute and since the U(2) and the O(3) couplings commute, 

where 

u = L - E ,  

{k) = { k l ,  k21, k = k ,  - k2, etc. 

It follows that the important quantities to calculate are 

gq,( )( g )  3 ( k ) [  r e ' ]  

(4.7) 

Following lengthy but straightforward calculations, we find the following complete 

[ L +  1]I/21p+l,o)(g), L a o ,  (4.A1) 

set of non-zero couplings: 
[ ,+(L'O'( g ) ]  {L+I.O)[L+ 1.01 = 

L(L+2) [gJ"L."( g ) ]  t L+ 1.1 ' [ L +  1.11 = L 3 1 ,  ( 4 . M )  ( L + l  ) rc"+'~"(g ) ,  

(4.B1) 
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(4.B3) 

9 L 2 1 ,  (4.C1) [ ~ t 2 , 0 1 ( g ) + ' L -  LO)( g)]{L+l,ol 

(2L+ 1)(2L- 1 )  

(4.C3) 

(4.C4) 

We are now in a position to calculate the reduced matrix elements of the fundamental 

Note that reduced matrix elements in the orthonormal basis (2.9) can be expressed 
tensor Ttlo}[lol in the orthonormal basis (2.9). 

({h'}(n')[L'&']II Ttlo)['o'll{h}( n) [L~ l )  

x ( - 1 ) L+ I - "(1 '1 ( n ')[ L' E 'I ; vM I[ TI{ h }( n )[ LE])] Lh')E''''. ( h + l - h ' ) / 2  = ( - 1 )  
(4.9) 

Note too that if, in general, { l j ) }  is a non-orthonormal basis state with Hermitian 
overlap matrix 

K i  = ( i  I j )  

then 
(4.10) 

I j )= K - ' I j ) = l k ) K ; ' ,  (4.1 1 )  

where K is the Hermitian square root of K ', is a member of the associated orthonormal 
basis. Furthermore, if 

then 

(4.13) 

In using (4.61, (4.7), (4.A-C) and (4.13) to obtain the reduced matrix elements of 
T, two alternatives arise: 
(i) For cases (A1)-(Bl), 

(4.14) [ ~t101[101 ~(LE))]tL'"'[L'"'l - - F([L'&'], [L&])J(L'&')). 
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We then obtain, for L'+ E ' =  L +  E + 1, 

({ h'} ( n ')[ LIE  '1  11 Ti 11 { h}( n )[ LE 1 )  
1 ah '  n" u ' h  

= C K , ~ , ~ ~ ( { ~ ' } [ L ' E ' ] ) K ~ . ! , ( {   LE]) U 
n" 

(4.15) 

with the selection rule 

n {  + n ;  = n ,  + n,. 

(i i)  For cases (B2)-(C4), 

Tt IO}[ 1 0 1 1 ( ~ ~ ) ) 1  t k ) [ L ' ~ ' l =  F ( {  k }  ; [LIE'], [ L ~ ] ) [ 2 ' ~ ~ ' ( d ) l (  L'E'))] '~' .  (4.16) 

It follows that 
t n )  (d )[ Tt I O H  IO11 ( L~ ) ) l i k K L ' " ' l ]  ( A ' )  

n h' ut n ' k  
2 2 2 ' 2 2  

=;.(- I--.-- ) F ( ( k } ;  [LIE'],  [ L E " [ [ ~ ' " ~ ( ~ ) ~ ' ' " ( ~ ) ] ' " ' ~ ~ ( L ' E ' ) ) ] ~ ~ ' ' .  

(4.17) 

Now the tensors 2'"' are normalised such that 

(O"'""( a)Z'"'( U + ) l O )  = s,,. (4.18) 

where at is a boson creation operator of U(2) rank (20) and 10) is the boson vacuum 
state. We conclude that 

[Z'"'( d)Z""'( OP"'"'' = (O"""( a)[Z'")(  ai)Z{20'( a~"""~o)z ' " ' ' (  d )  

= (n'll u t  11 n)Z'""( OP) (4.19) 

where (n'llat\ln) is the U(2)-boson reduced matrix element given in the appendix of 
part I. We then obtain, for L ' + E ' = L + E - - I ,  

({ h '}( n ')[ L' E '3  11 Ti lo)[ lo' 11 { h }( n )[ LE 1 )  
= C ( -  1 ) ( " - k ) / 2 K n ~ m , ( {  h'}[ L'E'])K ;!,({ h}[  L E ] )  

m m ' k  

(4.20) 

5. Reduced matrix elements of the generators of SU(3) = SO(3) 

The reduced matrix elements of L are trivially found to be given by 
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pmm' 

from which we easily deduce 

6. Examples 

6) I{h,OHLl; Q M )  
Since no degeneracy in L occurs in SU(3) symmetrical unirreps {h,O} and since h l  - L 
is always even in such unirreps, we omit the multiplicity label and we use the simpler 
notation 

I{h,O}[Ll; a w  (6.1) 

to designate these states. 
From (I5.4), we have 

K 2 ( { h 1 0 } ; [ L ] ) = ( 2 L + 3 ) ( 2 L + 5 ) .  . .  ( h , + L + l ) .  

Then from § 4, we easily obtain 

and 

( { h , +  1,O}[L-1]~/T~ '~ '~ '~~~~{h,O}[L])=  -( L ( h , - L + 2 ) ) , ' * ,  (2L- 1) (6.4) 

(cf Wybourne 1974). 
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From (6.3), (6.4) and using (5.4), we then deduce 

and 

(cf Wybourne 1974). 

(ii) 1{42Hn)[LEl; a M )  

The SU(3) unirrep (42) is the simplest example of a unirrep with an SO(3) multiplicity. 
The branching rule is given by 

SU( 3)J  SO( 3) : {42}5[ 01 + 2[ 21 + [ 31 + [4]. 

This unirrep has been thoroughly studied from the point of view of multiplicity in 
0 5.2 of part I to which we refer the reader. 

A computer code has been written from which we retrieved the values given in 
table 1. These reduced matrix elements must satisfy some sum rules (Partensky and 
Quesne 1979). One of them is related to the quadratic Casimir operator of SU(3) given 
by 

z2 = (- 1 )"L,L-, + ( - 1 ) "C2"c2-" (6.7) 
U Y 

which takes the value 

(12) = !( h: - hl hz + hi  + 3 h i )  (6.8) 

Table 1. Reduced matrix elements of C2 in the {42} SU(3) unirrep. 
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on a given {hlh2} SU(3) unirrep. These equations imply 

= Snn.[(I,)- L(L+ l)]. (6.9) 

It can be verified that the values for the reduced matrix elements of C3 given in table 1 
satisfy this sum rule. 

Another sum rule pertains to the trace of C2 in a given L subspace of a {h,h,} 
SU(3) unirrep. For a self-contragredient unirrep like {42}, for which 

{hl ,  h l -  h21 = {h,  h21, 

the trace sum rule gives 

C ( {hl  h2H n KLEIII C211{hl h2H n)[ L E I )  = 0, L Z  h2. 
n 

Once again it can be verified that the values given in table 1 satisfy this sum rule. The 
sum rule for the trace in the general case can be found in Partensky and Quesne (1979). 
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